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  Abstract 

  Multiprocessors have come out as a powerful computing 

medium for running real-time applications, especially where a 

uni-processor system would not be adequate to execute all the 

tasks. The accuracy and high performanceof multiprocessors 

have made a powerful computing resource. Such computing 

fremework requires a reliable algorithm to determine when and 

on which processor a given task should be compile in a 

successive manner. In multiprocessor systems, an efficient 

scheduling of a parallel jobs onto the processors that minimizes 

the entire execution time is vital for achieving a high 

performance. The Round Robin CPU scheduling algorithmis 

one of the widely used techniques for constrained optimization. 

Round Robin algorithm are basically preemptive algorithms 

based on the mechanics of quantum-based selection of jobs. As 

processors become available, the processesfrom the process 
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selection list are assigned to any of the available processor in 

random fashion. This paper evaluates the performance of 

tradiitionalround robin scheduling algorithm in multiprocessor 

environment under markovian concepts. The overall 

performance in terms of varying (random and linear) numerical 

data are measured and then comparative analysis is performed 

to justify the conclusion.Further, simulation study has been 

performed with the help of some numerical illustrations and 

graphical charts. 

 

 

 

1. Introduction 

CPU Scheduling algorithms are used by dispathcer to decide which of the available ready state 

process should be selected next for assignment to CPU, so that resource utilization can be 

improved and queueing delay can be minimized.Different scheduling algorithms have been 

proposed by various researchers that proved efficient in uniprocessing system as well as for 

multiprocessing system. Multiprocessing systems provides better performance in terms of 

response time, throughput,waiting time &turn around time especially, where the uni processing 

system does not work well. Hence, it is required to analyze the performance of scheduling 

algorithms in multiprocessing system too. 

 

In the proposed study, we have implemented the traditional round robin scheduling algorithm 

under multiprocessing environment. Since,in conventional approach used for uniprocessing 

system,each process shares an equal amount of processor time and the dispatcher ensures that 

each queue receives service time proportional to its quantum.Ifthe size of time quantum is very 

small then this may result in more contest switching and each process(especially I/O bound 

process) may not receive a fair amount of processortime.Thus, to overcome these anomalies, we 

implemented round robinscheduling for multiprocessors by considering that the size of the time 

quantum is relatively large.To demonstrate the versatility of Multiprocessor Round Robin 

(MPRR) scheduling, we modeled the transition of schedular over two different processor 

according to stochastic process. Our outcomesshow that MPRR scheduling achieves accurate 
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proportional processing and high performance over a diverse (random or linear) data sets [7].  The 

following are some observations that we realized while implementing round robin scheduling 

algorithms for multiprossor system. 

 

• Accuracy: Using the Markov chain model [18-19, 24-25], MPRRscheduling achieves accurate 

proportional fairness with low error rate, independent of the number of queues and processors in 

the system. 

• Efficient and scalable solution: MPRRscheduling uses per processor run processes and adds low 

overhead to an existing operating system scheduler, even when processes dynamically arrive, 

depart, or change quantum. 

 • Flexible user control: MPRRscheduling assigns a default quantum to each queue based on its 

priority and provides additional support for users to specify process quantum to control transition 

on dispatcher. 

 • High performance: MPRRscheduling works in concert with existing scheduler schemes 

targeting other system attributes, such as latency and throughput, and thus enables high 

performance as well as accurate fairness. The MPRR works in concert with these features and 

retains high performance of the underlying dispatcher [7, 17]. 

 

2. Related Work 

Designing of an effective and efficient randomly assign ready queue processing under 

multiprocessor environment is always an area of interest for various researchers. So, many 

enhancements in various CPU scheduling algorithm had been proposed to evaluate their 

performance like Shukla & Jain [1] performed an estimation of ready queue processing under new 

CPU scheduling algorithm using multiprocessor environment with varying time quantum. The 

combined study of lottery scheduling and systematic lottery scheduling is found efficient in terms 

of model-based study using some numerical illustration and Shukla et al. [10] proposed usual 

lottery scheduling procedures in multiprocessor environment where variable of main interest and 

auxiliary information like size of the process was positively correlated and also Shukla & Jain 

[11] performed the size based priority scheme for the ready queue time length prediction has 

shown that it is better than usual lottery scheduling scheme in terms of confidence intervals and in 

[2], the authors describes a general estimator to estimate the functioning of ready queue 
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processing under the multiprocessor environment and derived the confidence intervals that was 

calculated for comparing the efficiency of the estimate. Tam et. al. [3] suggested shared memory 

multiprocessors with cache sharing within a chip set. Introduced multiple processing chips and 

hence consist of a SMP, CMP and SMT configuration with non-uniform data sharing operating 

system schedulers. Levin et. al. [4] developed DP Fair scheduling policy and examined how it 

short out the problem of greedy scheduling algorithms. Bertogna&Cirinei [5] proposed a new 

approach for the analysis of real time systems globally scheduled on a symmetric multiprocessor 

platform. The effectiveness of the analysis has been extensively proved through mathematical 

formulation and their numerical illustration.  

 

Fairness is a basic requirement of any operating system CPU scheduler. Existing round robin 

scheduling algorithms are either inaccurate or inefficient and non-scalable for multiprocessors. 

This problem is becoming increasingly severe as the designer to produce larger scale multi-core 

processors. Li et al. [7] introduced the new CPU scheduling algorithm that solved the problem of 

multiprocessor using distributed weighted round robin scheduling, they present two vastly 

different scheduler designs and achieved accurate proportional processing and high performance 

for a diverse data. Further some mathematical formulation and numerical experimental studied 

had been done for justification. Fedorova et al. [8] described a new operating system scheduling 

algorithm that improves performance isolation on chip multiprocessors. New cache-fair algorithm 

ensures that the application runs as quickly as it would under the allocation of the particular 

thread for execution. Implementation of the algorithm in Solaris™ 10, and getting the improved 

performance for SPEC CPU, SPEC JBB and TPC-C. Further, some comparative study performed 

to justify their results. Elliott & Anderson [17] studied graphics processing units that can offer 

significant performance advantages over traditional CPUs. Survey on real time system that had 

been done to integrate GPUs into multiprocessor systems. Presented an integrated soft real time 

multiprocessor system shows that a GPU can achieve greater levels of system performance with 

the help of some mathematical formulation and their numerical illustration. Burns et. al. [9] 

presented an EDF-based task-splitting scheme for scheduling multiprocessor systems. 

Comparison had been done with two scheme and generated some numerical results to performed 

the maximum utilization of processor. Davis & Burns [14] performed the survey on hard real-time 

scheduling algorithms and schedulability analysis techniques for homogeneous multiprocessor 

systems. It reviewed the different scheduling methods and considers the various performance 
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metrics that can be used for comparison. Vijayalakshmi & Padmavathi [15] proposed a 

comparison Between genetic algorithm and list scheduling algorithm with the help of 

multiprocessor task scheduling environment. Based on experimental results some studies were 

generated that’s solve scheduling problem of multiprocessors. Li & Baruah [12] proposed the 

inter-processor migration for the scheduling of mixed-criticality implicit-deadline sporadic task 

systems on identical multiprocessor platforms. Investigated theoretical analysis as well as 

mathematical experiments to demonstrate their effectiveness. Cheramy et. al. [13] presented a 

simulator for the comparison and the understanding of real time multiprocessor scheduling 

policies. Generated the data sets, to perform simulations and to collect data from the experiments. 

Chandra et. al. [16] introduced a novel weight readjustment algorithm to translate infeasible 

weight assignments to a set of feasible weights. Then presented surplus fair scheduling a 

proportional share CPU scheduler designed for symmetric multiprocessors. Implemented 

scheduler in the Linux kernel and demonstrate its efficacy through an experimental evaluation. 

 

To carry out the proposed review work some of the studies are discussed, which had been 

previously undertaken in the field of round robin CPU scheduling like Behera et al [27] proposed 

a multi cyclic round robin scheduling algorithm using dynamic time quantum to minimizes the 

number of context switches, average waiting time and average turnaround time. Some more 

researchers Goel et al. [22] presented a comparative study between round robin scheduling and 

Optimum multilevel dynamic round robin scheduling with the help of some mathematical 

approach. Based on the experimental analysis results are getting better then round robin 

scheduling algorithm in terms of turnaround time, waiting time and context switch. Some other 

researcher’s Pandey & Vandana [20] proposed studies on existing round robin scheme to reduce 

the total waiting time of an any process which is spend in a ready queue and improve the 

performance of existing round robin algorithm to understand this waiting time phenomenon using 

mathematical calculation. Few researchers Abdulrahim et al. [26] enhanced a new round robin 

scheduling algorithm and compared the different round robin algorithms with their different 

factors and classifications. Proposed priority based new round robin CPU scheduling algorithm 

reduce the starvation problem. Whereas Mishra & Khan [23] also described an improvement in 

round robin through preparing a simulator program and tested improved round robin scheduling 
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algorithm. After testing it has been found that the waiting time and turnaround time have been 

reduced. 

 

Various authors studied a variety of stochastic processes and their applications in various fields 

and developed a stochastic process in the management of queues like Naldi [19] developed a 

Markov chain model for understanding the internet traffic sharing among various operators in 

competitive areas. Shukla et al. [18] performed a linear data model-based study of improved 

round robin CPU scheduling algorithm with functions of shortest job first scheduling with varying 

time quantum. The combined study of FIFO and RR is found efficient in terms of model-based 

study using Markov chain model. Some more researchers Jain et al. [21] also presented a linear 

data model-based study of  round robin CPU scheduling algorithm with features of shortest job 

first scheduling with varying time quantum and Jain & Jain [25] proposed work based on data 

model study of  RR CPU Scheduling algorithm with features of shortest job first scheduling with 

varying time quantum by using Markov chain model with different data set and performed some 

numerical based study and also Sendre et al. [6, 24] proposed an improved round robin scheduling 

algorithm that reduces the average waiting time and increases the throughput and maintains the 

same level of CPU utilization. Authors also proposed some other ways to assign the scheduler to 

the next ready process. Further some random probability based numerical studies have been done 

to justify the proposed suggestions. Deriving a motivation from these, a class of scheduling 

schemes is designed in this paper for performing an integrated approach of performance 

comparisons under the assumption of markov chain model and using a data model approach with 

improved round robin PCU scheduling schemes. 

 

3. Proposed System 

In uniprocessor environment process are assign to the processor in a particular fashion according 

to CPU scheduling algorithm, like in round robin scheduling dispatcher select the processes 

according to FCFS order and preempts them on the basis of time-quantum. But in case of 

multiprocessing environment although processes are dispatched in round robin fashion but the 

selection of processor to whom the process should be assigned is done dynamically.  In this 

paper we analyzed the performance of round robin scheduling algorithm using Markov chain 

model under multiprocessing environment by considering two processor P1 and P2 each having 
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large number of processes that are assigned randomly. There are two states namely R and B, that 

shows the resting and busy condition of both the processors respectively. The following 

assumption are considered to model the allocation of varies processes among P1 and P2: 

 All the ready processes reside in ready queue and CPU scheduler select the processes in 

round robin fashion and assign them to any of the available processor randomly.  

 Any process may initially assign to either of the processor (indicated as P1 and P2) with 

probability Pr1 and Pr2 ( 𝑃𝑟𝑖 = 1𝟐
𝒊=𝟏  ). 

 Initially process is assigned to any of the processor Pi (i = 1, 2) with a dynamic 

mechanism and fix a timer to interrupt on completion of certain predefined time-quantum. 

 Process hold the processor until the time quantum is over and on completion of time 

quantum if the processes is still pending, then it again joins the ready queue from the tail. If it 

completes its executionsucessfully then it goes out from Pi.     

 This processor allotment to various processes continues until the ready queue becomes 

empty. 

 The same processor may be assigned again and again for various processes or they may 

be assigned in an alternative way (P1, P2, P1,…). 

 When both the processors are free then control moves to resting states and when both the 

processors are busy in execution their control moves to busy states. 

 If both the processors are availabe and some new processes joins ready queue then they 

may be assigned to any of the processors hence state will again be changed from R to either P1 or 

P2. 

 When the processors get free then its states changed from B to either P1 or P2. 
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Figure 3.1: Generalized Markov chain models in Multiprocessor environment. 

 

3.1Markov Chain Analysis 

Let [X
(n)

, n≥1], be a Markov chain where X
(n)

 denotes the state of the processor at the n
th

 

quantum of time. The state space for the random variable X
(n) 

is {P1, P2, B, R} where Pi(P1or 

P2)are two processorseach having large number of processes that are assigned randomly. There 

are two states namely R and B, that shows the resting and busy condition of both the processors 

respectively.Predefined initial selection probabilities of state are: P[X
(0) 

= P1] = Pr1; P[X
(0) 

= P2] 

= Pr2; P[X
(0) 

= B] = Pr3; P[X
(0) 

= R] = Pr4; Where  Pr1 + Pr2 + Pr3 + Pr4=   𝑃𝑟𝑖𝟒
𝒊=𝟏  = 1. 

 

Figure 3.2: Generalized transition probability model. 

 

Under there assumption the behavior of processors and action of scheduler can be modeled by 

core state discrete time markov chain (fig. 3.2) in which transition probabilities are represented 

by an edge connecting the circulars indicating the different chain states and the time is indicated 

by number of attempts. 

Thus, the initial condition before the first selection of processors are: 

 

P [ X
(0) 

= P1] = Pr1 ; P [ X
(0) 

= P2] = Pr2 ; P [ X
(0) 

= B] = 0; P [ X
(0) 

= R] = 1 -  𝑃𝑟𝑖𝟐
𝒊=𝟏 .     …… eq. 

1 

 

Therefore, the one step transition probabilities matrix over two processors is as follows: 
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Let Tij (i, j = 1, 2, 3,…) be the unit step transition probabilities of scheduler over three states then 

transition probability depend on subject to following condition: 

 

T14 = (1 –  𝑇1𝑖𝟑
𝒊=𝟏 ); T24 = (1 –  𝑇2𝑖𝟑

𝒊=𝟏 ); T34 = (1 –  𝑇3𝑖𝟑
𝒊=𝟏 ); T44 = (1 –  𝑇4𝑖𝟑

𝒊=𝟏 ); &0 ≤ Tij≤ 

1, 

 

The state probabilities, after the first quantum can be obtained by a following simple 

relationship: 

 

P [ X
(1) 

= P1] =  P [ X
(0) 

= P1] P [ X
(1) 

= P1 / X
(0) 

= P1] + P [ X
(0) 

= P2] P [ X
(1) 

= P1 / X
(0) 

= P2 ] + P 

[ X
(0) 

= B] P [ X
(1) 

= P1 / X
(0) 

= B ] +P [ X
(0) 

= R] P [ X
(1) 

= P1 / X
(0) 

= R ] 

 

P [ X
(1) 

= P1] =  𝑃𝑟𝑖 𝑇𝑖1𝟑
𝒊=𝟏  ; P [ X

(1) 
= P2] =  𝑃𝑟𝑖 𝑇𝑖2𝟑

𝒊=𝟏  ;  

P [ X
(1) 

= B] =  𝑃𝑟𝑖 𝑇𝑖3𝟑
𝒊=𝟏  ; P [ X

(1) 
= R] =  𝑃𝑟𝑖 𝑇𝑖4𝟑

𝒊=𝟏        ……eq. 2 

 

Similarly, state probabilities after second quantum can be obtained by following simple 

relationship: 

 

P [ X
(2) 

= P1] =  P [ X
(1) 

= P1] P [ X
(2) 

= P1 / X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= P1 / X
(1) 

= P2 ] + P 

[ X
(1) 

= B] P [ X
(2) 

= P1 / X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= P1 / X
(1) 

= R ] 

 

P [ X
(2) 

= P1] =  𝟒𝒊=𝟏 (  𝑃𝑟𝑗 𝑇𝑗𝑖𝟑
𝒋=𝟏 ) Ti1; P [ X

(2) 
= P2] =   𝟒𝒊=𝟏 (  𝑃𝑟𝑗 𝑇𝑗𝑖𝟑

𝒋=𝟏 ) Ti2;  

P [ X
(2) 

= B] =   𝟒𝒊=𝟏 (  𝑃𝑟𝑗 𝑇𝑗𝑖𝟑
𝒋=𝟏 ) Ti3; P [ X

(2) 
= R] =   𝟒𝒊=𝟏 (  𝑃𝑟𝑗 𝑇𝑗𝑖𝟑

𝒋=𝟏 ) Ti4......eq. 3 

 

The generalized expressions for n quantum are: 
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P [ X
(n) 

= P1] =  𝟒𝒎=𝟏   ........   𝟒𝒍=𝟏  𝟒𝒌=𝟏  𝟒𝒊=𝟏  𝑃𝑟𝑗 𝑇𝑗𝑖  𝑇𝑖𝑘  𝑇𝑘𝑙 … . .𝑇𝑚1𝟑
𝒋=𝟏 ; 

P [ X
(n) 

= P2] =  𝟒𝒎=𝟏   ........   𝟒𝒍=𝟏  𝟒𝒌=𝟏  𝟒𝒊=𝟏  𝑃𝑟𝑗 𝑇𝑗𝑖  𝑇𝑖𝑘  𝑇𝑘𝑙 … . .𝑇𝑚2𝟑
𝒋=𝟏 ; 

P [ X
(n) 

= B] =  𝟒𝒎=𝟏   ........   𝟒𝒍=𝟏  𝟒𝒌=𝟏  𝟒𝒊=𝟏  𝑃𝑟𝑗 𝑇𝑗𝑖  𝑇𝑖𝑘  𝑇𝑘𝑙 … . .𝑇𝑚3𝟑
𝒋=𝟏 ; 

P [ X
(n) 

= R] =  𝟒𝒎=𝟏   ........   𝟒𝒍=𝟏  𝟒𝒌=𝟏  𝟒𝒊=𝟏  𝑃𝑟𝑗 𝑇𝑗𝑖  𝑇𝑖𝑘  𝑇𝑘𝑙 … . .𝑇𝑚4𝟑
𝒋=𝟏 ......eq. 4 

 

 

4. RoundRobin CPU Scheduling Schemes Under Multiprocessing Environment 

In this section, wehave discussed few scheduling schemes that may be produced from above 

mentioned generalized MPRRscheduling modelby imposing some restrictions and condition. The 

three schemesrealized are as follows: 

 

4.1 Scheme - I:When process may be assigned to either the first processor P1 or second 

processor P2 only.New process joins the from ready queue from tail and the oldested process 

isdispatched to any of two processor P1or P2for execution. Similarly, the otherprocesses are 

selected from ready queue in FCFS order is assigned randomly toeither processorP1 or P2. Thus, 

the assignment of processor for processes is random. 

 

 

 

 

 

 

 

OR 

 

Figure 4.1: Restricted transition probability diagram 

 

Thus, the initial probabilities under scheme-I are: 

 

P [ X
(0) 

= P1] = 1 ; P [ X
(0) 

= P2] = 0 ; P [ X
(0) 

= B] = 0 ; P [ X
(0) 

= R] = 0 

 

Unit step transaction probability matrix for X
(n) 

under scheme-I is: 
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By using eq. 2 the state probabilities after the first-time quantum are: 

 

P [ X
(1) 

= P1] = T11 ; P [ X
(1) 

= P2 ] = T12  ; P [ X
(1) 

= B] = T13; P [ X
(1) 

= R] = T14 

 

By using eq. 3 the state probabilities after the second time quantum are: 

 

P [ X
(2) 

= P1] =  P [ X
(1) 

= P1] P [ X
(2) 

= P1 / X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= P1 / X
(1) 

= P2 ] + P 

[ X
(1) 

= B] P [ X
(2) 

= P1 / X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= P1 / X
(1) 

= R ] 

 

P [ X
(2) 

= P1] = T11T11+ T12 T21 + T13 T31 + T14 T41 

 

P [ X
(2) 

= P2] =P [ X
(1) 

= P1] P [ X
(2) 

= P2/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= P2/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= P2/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= P2/ X
(1) 

= R ] 

 

P [ X
(2) 

= P2] = T12 T21 + T22T22+ T23 T32+ T24 T42 

 

P [ X
(2) 

= B]=P [ X
(1) 

= P1] P [ X
(2) 

= B/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= B/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= B/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= B/ X
(1) 

= R ] 

 

P [ X
(2) 

= B] = T13 T31 + T23 T32 + T33T33 

 

P [ X
(2) 

= R] =P [ X
(1) 

= P1] P [ X
(2) 

= R/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= R/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= R/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= R/ X
(1) 

= R ] 

 

P [ X
(2) 

= R] = T14 T41 + T24 T42 + T44T44 
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Similarly, third time quantum are: 

 

P [ X
(3) 

= P1] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T11 + ( T12 T21 + T22T22+ T23 T32 + T24 T42) 

T21 + ( T13 T31 + T23 T32 + T33 T33) T31 + ( T14 T41 + T24 T42 + T44 T44) T41 

 

P [ X
(3) 

= P2 ] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T12 + ( T12 T21 + T22T22+ T23 T32 + T24 T42) 

T22 + ( T13 T31 + T23 T32 + T33 T33) T32 + ( T14 T41 + T24 T42 + T44 T44) T42 

 

P [ X
(3) 

= B] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T13 + ( T12 T21 + T22T22+ T23 T32 + T24 T42) T23 

+ ( T13 T31 + T23 T32 + T33 T33) T33  

 

P [ X
(3) 

= R] = (T11T11+ T12 T21 + T13 T31 + T14 T41) T14 + ( T12 T21 + T22T22+ T23 T32 + T24 T42) T24  

+ ( T14 T41 + T24 T42 + T44 T44) T44 

 

Similarly, we can find fourth, fifth and so on time quantum. 

 

4.2  Scheme - II:When processors assigned in alternative manner (i.e. P1,P2, P1, …).The 

following transition are restricted in this scheme: 

 A new process can only enter to first processor P1 only. 

 Transition from processor P1 to P1 or P2 to P2 are restricted. 

 

Figure 4.2: Restricted transition probability diagram. 

 

Thus, the initial probabilities under scheme-II are: 
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P [ X
(0) 

= P1] = 1 ; P [ X
(0) 

= P2] = 0 ; P [ X
(0) 

= B] = 0 ; P [ X
(0) 

= R] = 0 

 

Unit step transaction probability matrix for X
(n) 

under scheme-II is: 

 

 

By using eq. 2 the state probabilities after the first-time quantum are: 

 

P [ X
(2) 

= P1] =  P [ X
(1) 

= P1] P [ X
(2) 

= P1 / X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= P1 / X
(1) 

= P2 ] + P 

[ X
(1) 

= B] P [ X
(2) 

= P1 / X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= P1 / X
(1) 

= R ] 

 

P [ X
(2) 

= P1] = T12 T21 + T13 T31 + T14 T41 

 

P [ X
(2) 

= P2] =P [ X
(1) 

= P1] P [ X
(2) 

= P2/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= P2/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= P2/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= P2/ X
(1) 

= R ] 

 

P [ X
(2) 

= P2] = T12 T21 + T23 T32+ T24 T42 

 

P [ X
(2) 

= B]=P [ X
(1) 

= P1] P [ X
(2) 

= B/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= B/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= B/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= B/ X
(1) 

= R ] 

 

P [ X
(2) 

= B] = T13 T31 + T23 T32 + T33T33 

 

P [ X
(2) 

= R] =P [ X
(1) 

= P1] P [ X
(2) 

= R/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= R/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= R/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= R/ X
(1) 

= R ] 

 

P [ X
(2) 

= R] = T14 T41 + T24 T42 + T44T44 
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Similarly, third time quantum are: 

 

P [ X
(3) 

= P1] = ( T12 T21 + T23 T32 + T24 T42) T21 + ( T13 T31 + T23 T32 + T33 T33) T31 + ( T14 T41 + 

T24 T42 + T44 T44) T41 

 

P [ X
(3) 

= P2 ] = (T12 T21 + T13 T31 + T14 T41) T12 + ( T13 T31 + T23 T32 + T33 T33) T32 + ( T14 T41 + 

T24 T42 + T44 T44) T42 

 

P [ X
(3) 

= B] = (T12 T21 + T13 T31 + T14 T41) T13 + ( T12 T21 + T23 T32 + T24 T42) T23 + ( T13 T31 + T23 

T32 + T33 T33) T33  

 

P [ X
(3) 

= R] = (T12 T21 + T13 T31 + T14 T41) T14 + ( T12 T21 + T23 T32 + T24 T42) T24  + ( T14 T41 + 

T24 T42 + T44 T44) T44 

 

Similarly, we can find fourth, fifth and so on time quantum. 

 

4.3  Scheme - III:When some restriction is applied to control transition –  

Transition from processors P1 orP2 to R is restricted as it is assuming that no processor can move 

to resting state until there exists at least one process in ready queue and if any of the processor 

become free then operating systems immediately assigns few processes that are currently assign 

to another processor. 

 Transition from state R to R or B to B is restricted.  

 

Figure 4.3: Restricted transition probability diagram. 
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Thus, the initial probabilities under scheme-III are: 

 

P [ X
(0) 

= P1] = 1 ; P [ X
(0) 

= P2 ] = 0 ; P [ X
(0) 

= B] = 0 ; P [ X
(0) 

= R] = 0 

 

Unit step transaction probability matrix for X
(n) 

under scheme-3 is: 

 

 

By using eq. 2 the state probabilities after the first-time quantum are: 

 

P [ X
(1) 

= P1] = 0 ; P [ X
(1) 

= P2] = T12 ; P [ X
(1) 

= B] = T13; P [ X
(1) 

= R] = T14 

 

By using eq. 3 the state probabilities after the second time quantum are: 

 

P [ X
(2) 

= P1] =  P [ X
(1) 

= P1] P [ X
(2) 

= P1 / X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= P1 / X
(1) 

= P2 ] + P 

[ X
(1) 

= B] P [ X
(2) 

= P1 / X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= P1 / X
(1) 

= R ] 

 

P [ X
(2) 

= P1] = T12 T21 + T13 T31 + T14 T41 

 

P [ X
(2) 

= P2] =P [ X
(1) 

= P1] P [ X
(2) 

= P2/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= P2/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= P2/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= P2/ X
(1) 

= R ] 

 

P [ X
(2) 

= P2] = T12 T21 + T23 T32+ T24 T42 

 

P [ X
(2) 

= B]=P [ X
(1) 

= P1] P [ X
(2) 

= B/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= B/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= B/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= B/ X
(1) 

= R ] 

 

P [ X
(2) 

= B] = T13 T31 + T23 T32   
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P [ X
(2) 

= R] =P [ X
(1) 

= P1] P [ X
(2) 

= R/ X
(1) 

= P1 ] + P [ X
(1) 

= P2] P [ X
(2) 

= R/ X
(1) 

= P2 ] + P [ 

X
(1) 

= B] P [ X
(2) 

= R/ X
(1) 

= B ] + P [ X
(1) 

= R] P [ X
(2) 

= R/ X
(1) 

= R ] 

 

P [ X
(2) 

= R] = T14 T41 + T24 T42   

 

Similarly, third time quantum are: 

 

P [ X
(3) 

= P1] = ( T12 T21 + T23 T32 + T24 T42) T21 + ( T13 T31 + T23 T32 ) T31 + ( T14 T41 + T24 T42 ) 

T41 

 

P [ X
(3) 

= P2 ] = (T12 T21 + T13 T31 + T14 T41) T12 + ( T13 T31 + T23 T32 ) T32 + ( T14 T41 + T24 T42) 

T42 

 

P [ X
(3) 

= B] = (T12 T21 + T13 T31 + T14 T41) T13 + ( T12 T21 + T23 T32 + T24 T42) T23  

 

P [ X
(3) 

= R] = (T12 T21 + T13 T31 + T14 T41) T14 + ( T12 T21 + T23 T32 + T24 T42) T24 

 

Similarly, we can find fourth, fifth and so on time quantum. 

 

5. Simulation Study with Numerical Analysis Using Data Sets 

In order to analyze three schemes mentioned in section 4.1, 4.2 and 4.3 under Markov chain 

model with varying quantum probability (random and linear) transition elements using different 

data sets are as follows: 

 

5.1 Data set – I 

Scheme I: Let initial probabilities are:Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0 

Consider data set of random and linear probabilities matrix are follows: 
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Table 5.1.1: The transition probabilities P [ X
(n) 

= Pi]for random and linear cases: 

 

 

Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0  

Consider data set of random and linear probabilities matrix are follows: 

 

 

Table 5.1.2: The transition probabilities P [ X
(n) 

= Pi]for random and linear cases: 
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Scheme III:Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0  

Consider data set of random and linear probabilities matrix are follows: 

 

 

Table 5.1.3: The transition probabilities P [ X
(n) 

= Pi]for random and linear cases: 

 

 

5.2 Data set – II 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0  

Consider data set of random and linear probabilities matrix are follows: 

 

 

Table 5.2.1: The transition probabilities P [ X
(n) 

= Pi]for random and linear cases: 
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Scheme II: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0  

Consider data set of random and linear probabilities matrix are follows: 

 

 

Table 5.2.2: The transition probabilities P [ X
(n) 

= Pi]for random and linear cases: 

 

 

Scheme III:Let initial probabilities are: Pr1 = 1; Pr2 = 0 ; Pr3 = 0 and Pr4 = 0  

Consider data set of random and linear probabilities matrix are follows: 
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Table 5.2.3: The transition probabilities P [ X
(n) 

= Pi]for random and linear cases: 

 

 

5.3 Data set – III 

Scheme I: Let initial probabilities are: Pr1 = 1; Pr2 = 0 ;Pr3 = 0 and Pr4 = 0  

Consider data set of random and linear probabilities matrix are follows: 

 

 

Table 5.3.1: The transition probabilities P [ X
(n) 

= Pi] for random and linear cases: 

 

Scheme II: Let initial probabilities are: Pr1= 1; Pr2= 0 ;Pr3= 0 and Pr4= 0  

Consider data set of random and linear probabilities matrix are follows: 
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Table 5.3.2: The transition probabilities P [ X
(n) 

= Pi] for random and linear cases: 

 

Scheme III: Let initial probabilities are: Pr1= 1; Pr2= 0 ;Pr3= 0 and Pr4= 0  

Consider data set of random and linear probabilities matrix are follows: 

 

 

Table 5.3.3: The transition probabilities P [ X
(n) 

= Pi] for random and linear cases: 
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6. Graphical Analysis 

Graphical analysis is performed under above mentioned three schemes in section 4.1, 4.2 and 4.3 

with different data sets in section 5.1, 5.2 and 5.3 considering random and linear probability 

matrix to put various quantum values. So, this analytical discussion on graphs about the variation 

P [ X
(n) 

= Pi] over three data sets are as follows: 

 

6.1 Data set – I: 

 

  

Figure 6.1.1: Scheme – I, random probability. Figure 6.1.4: Scheme – I, linear probability. 

 

  

Figure 6.1.2: Scheme – II, random probability. Figure 6.1.5: Scheme – II, linear probability. 

 



 ISSN: 2249-0558Impact Factor: 7.119  

 

242 International journal of Management, IT and Engineering 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

  

Figure 6.1.3: Scheme – III, random probability. Figure 6.1.6: Scheme – III, linear probability. 

 

Remark: In data set – I, we observed that, the data analysis in these graphs are almost similar and 

the probability of the dispatcher in the resting state R is very high as compare to other transition 

states. The special remark for this multiprocessor process scheduling is that random probability 

in fig 6.1.1 and fig. 6.1.3 for the state processor P2 is little bit high as compare to resting state. It 

means the performance of the dispatcher is also increasing proportionally. Therefore, there are 

much chance for jobs assigned in state processor P2 to be executed more rather the jobs assigned 

to processor P1. 

 

6.2 Data set – II: 

 

  

Figure 6.2.1: Scheme – I, random probability. Figure 6.2.4: Scheme – I, linear probability. 
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Figure 6.2.2: Scheme – II, random probability. Figure 6.2.5: Scheme – II, linear probability. 

  

Figure 6.2.3: Scheme – III, random probability. Figure 6.2.6: Scheme – III, linear probability. 

Remark: In data set – II, we observed that, the data analysis in the processor statesP1 and P2 of the 

dispatcher makes stable pattern when number of quantum n >= 5 but up to n = 5 it reflects changing in 

graphical patterns. The remarkable point is that the probability of rest state Ris average (except fig. 6.2.4 

and fig. 6.2.5) in all data sets and the probability of busy state B is comparatively low. This shows a better 

use of processors state and processor utilization is optimum. Therefore, less restricted scheduling scheme 

lead to a better use of processors time. 

 

6.3 Data set – III: 
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Figure 6.3.1: Scheme – I, random probability. Figure 6.3.4: Scheme – I, linear probability. 

  

Figure 6.3.2: Scheme – II, random probability. Figure 6.3.5: Scheme – II, linear probability. 

  

Figure 6.3.3: Scheme – III, random probability. 

 

Figure 6.3.6: Scheme – III, linear probability. 

Remark: In data set – III, we observed that, the random probability of processor state P1 and P2 are 

higher than the linear probability states over different quantum number which is a good sign of 

increase performance efficiency of the MPRRscheduling in the given data sets. But in another case of 

linear probability the data analysis in these graphs are varying accordingly, it means the performance 
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of the dispatcher is not predictable. Here, there are lesser chance for jobs contained in processors 

state for execution. The special remark for data set – III is random probability provides more chance 

to job processing in multiprocessor environment than linear probability. 

 

7. Conclusion 

Efficient and optimum use of processor is a key to every operating system scheduler. Previous 

scheduling algorithms suffer from poor efficiency, high overhead or incompatibility with existing 

scheduler schemes. It is essential for operating systems to keep efficient, accurate and high-

performance CPU scheduling algorithm designs. This paper proposes an adequate and high-

performance analysis and comparison between three schemes of the MPRRCPU scheduling algorithm 

under markov chain model using varying probability matrix with number of data sets which have 

functions of restriction in terms of some state transition probabilities. MPRR scheduling integrates 

seamlessly with existing schedulers using per-processor run processes and presents a practical solution 

for existing operating systems. We have evaluated MPRRscheduling experimentally and numerical 

analytically. Using a diverse (random and linear) data set of probability ratio, our experiments 

demonstrate that MPRR achieves efficient, accurate and high performance over uniprocessing system. 

Our formal graphical analysis proves that MPRR scheduling scheme-I and scheme-III for random data 

sets are achieves positive stability in terms of security measure that is highly useful and 

recommendable to improve the performance of study. Further, we suggest that the higher transition 

probabilities are the better choice for best processors utilization. Hence it is recommended that the 

multiprocessor system designer should keep this idea while designing quantum based preemptive 

algorithm. 
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